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Abstract 

Bug-bounty, a crowdsourcing way for vulnerability discovery, is an emerging practice for 

firms to detect security loopholes in their online systems. Unlike a typical crowdsourcing 

platform, in bug-bounty platforms, firms are required to collaborate with hackers on the platform 

continuously. Despite the growing interest in studying bug-bounty programs, it remains unclear 

how firms collaborate with hackers. In this paper, we examine how the firm’s experience affects 

the efficiency in resolving security vulnerabilities on the platform. Using a dataset collected from 

the HackerOne bug bounty platform, we show that there exists an inverted U-shaped relationship 

between the organization’s vulnerability resolution time and the number of vulnerabilities 

resolved in the past. Interestingly, the firm may perform worse (i.e., resolving in a long time) as 

they gain more experience initially. However, as the firm has resolved a sufficient number of 

vulnerabilities, the firm experience turns into a positive learning effect. Furthermore, our 

findings suggest that there are two advantages for firms continuously working with the same 

hacker. First, the positive learning effect kicks in earlier if the firm continuously works with the 

same hacker on the platform. Second, the repetitive working experience with the same hacker 

amplifies the positive learning effect. Finally, we found that working with the same hackers may 

lower the overall resolving time. The study provides theoretical contributions and some 

important implications in how organizations work with the online crowd through an open 

platform, especially under the context of vulnerability discovery, crowdsourcing, and 

organizational learning. 
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1. Introduction 

Recently, crowdsourced vulnerability discovery, also known as bug-bounty, has received 

significant attention from firms for discovering security vulnerabilities in their online assets. A 

vulnerability is a security flaw that arises due to some system design, implementation, or 

maintenance issues (Krsul, 1998). By exploiting these vulnerabilities, malicious parties can gain 

unauthorized access to protected resources. Computer hackers often compromise information 

systems by exploiting software vulnerabilities on these systems (Cavusoglu et al., 2008). 

Recently, several bug-bounty platforms emerge to tackle the challenges of identifying 

vulnerability: firms can set up accounts on bug-bounty platforms announcing reward policies for 

ethical hackers to explore the possibilities of discovering vulnerabilities on the firm’s systems. A 

key advantage of bug-bounties is that firms can leverage a large base of ethical hackers1 to 

identify possible loopholes in their systems at a relatively low cost (M. Zhao, Grossklags, & Liu, 

2015). 

While bug-bounty programs are attractive for firms to identify security vulnerabilities, 

avoiding harmful eventualities such as data breaches, however, working with a crowd of hackers 

on bug-bounty platforms can be challenging. First, like many other online communities, the 

characteristics of online users on bug-bounty platforms can be dynamic and evolving (Faraj, 

Jarvenpaa, & Majchrzak, 2011). Inadequately fitting past experiences in working with the 

hackers into a new vulnerability resolution process may potentially harm the resolution 

efficiency for firms. Furthermore, unlike a typical offline working environment, online platforms 

lack a shared working identity and culture, which makes it hard for firms to estimate the 

commitment, communication dynamics, or even outcomes of the partnered online hackers 

                                                           
1 From this point onwards, ethical hackers are referred to as hackers throughout the paper.  
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despite the availability of reputational systems (Lykourentzou, et al., 2016). As such, it is unclear 

whether firms can still learn from their past experience to improve their working efficiency on a 

bug-bounty platform.  

Although research has examined the working relationship between teammates and how a 

professional’s experience may alter their future working performance (Huckman, Staats, & 

Upton, 2009), studies related to how firms collaborate with online communities are scant. 

Further, information security literature mostly focuses on the incentives and characteristics of the 

hackers and the resolving efficiency at the organizational level (Arora et al., 2010; Arora, et al., 

2006; Hata, et al., 2017; Kannan & Telang, 2005; Rescorla, 2005; Votipka, et al., 2018). In this 

paper, we explore and ask: how does an organization work with the crowdsourcing hackers on 

an open platform? Specifically, we analyze the firm performance from an organizational 

learning perspective. Using a dataset from HackerOne, a leading bug-bounty platform, we 

provide empirical evidence on the non-linear effect of a firm’s experience on their vulnerability 

resolution-time and how this effect changes with the increase of experience of working with the 

same hacker. 

We show an inverted-U shape relationship between the firm’s experience and the 

vulnerability resolution time. The firm initially performs worse (i.e., resolving in a long time) as 

it gains more experience. However, after the firm has gained sufficient experience in working 

with hackers, experience may lead to a positive learning effect – a decrease in resolution time 

due to the additional experience in resolving vulnerability. Furthermore, we also find that there 

are two advantages for firms continuously working with the same hacker. First, the positive 

learning effect kicks in earlier if the firm works with the same hacker multiple times. Second, the 

repetitive working experience with the same hacker amplifies the positive learning effect. Our 
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results also suggest that working with the same hackers may lower the overall resolving time. 

These findings provide some important implications for platform designers and organizations 

that seek to adopt a crowdsourcing approach for vulnerability discovery. To the best of our 

knowledge, this is one of the first studies to empirically investigate the learning process of an 

organization while resolving security vulnerability on an bug-bounty platform.  

2. Current Literature and Research Gaps 

This study draws literature from three distinct areas of research: economics of 

information security, organizational learning, and crowdsourcing. The field of economics of 

information security is recent and thriving; it aims to study the economic aspects of cybersecurity 

by understanding the incentive mechanism of organizations responsible for keeping the system 

secure, the users who use the system, and the hackers who want to exploit the system. 

Vulnerability discovery and the resolution of vulnerabilities are the two most important topics 

studied in this area (Jo, 2018). This study contributes empirically to this literature by studying 

the relationship between organizations' experience of vulnerability resolution and their 

performance of resolving such vulnerabilities.  

The majority of the work on vulnerability resolution-time has been studied in the context 

of software patch management and the factors affecting the patch management process. Arora et 

al., (2010), showed that public disclosure of a vulnerability expedites the patch release process of 

an organization. A public disclosure pushes the vendor to release the patch much quickly as 

compared to no disclosure or delayed disclosure. Moreover, the critical vulnerabilities are 

patched faster as compared to low-risk vulnerabilities. Vulnerability patch management has also 

been studied within the context of organizational competition and strategy (Arora, Forman, 

Nandkumar, & Telang, 2006; Jo, 2018). Arora et al. (2006a), argued vendors face two separate 
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threats while competing for patching with another vendor for the same vulnerability. The first 

effect is the disclosure threat, which comes from the possibility of a patch release by another 

vendor before them and implicitly disclosing the vulnerability. The second threat comes from the 

actual competition because users penalize laggards by comparing the responses of vendors that 

sell a similar product. Jo-Arrah, (2018) studied the competition effect on patch release for 

vulnerabilities in a web browser market. She focused on market concentration as a measure of 

competition intensity and found that higher market concentration positively impacts the vendors' 

responsiveness in patching vulnerabilities. However, a dominant position in the market (such as 

Google Chrome’s) negatively impacts the promptness of releasing a patch. None of the previous 

studies have analyzed the patch management of an organization while accounting for their past 

patching experience. One of the possible reasons is the lack of availability of internal 

organizational data on vulnerability resolution. Generally, there is limited empirical work on 

issues related to vulnerability discovery and disclosure which is a concern for researchers in the 

area (Kannan & Telang, 2005; Ransbotham, Mitra, & Ramsey, 2012). In this study, we explore a 

unique dataset that brings insight into the organizational processes while resolving security 

vulnerabilities.  

The second stream of research relevant to our study is the organizational learning 

literature. The relationship between experience and performance has been a widely studied topic 

in organizational learning (Haleblian & Finkelstein, 1999; Kim, Kim, & Miner, 2009; Wright, 

1936). We expect that organizations resolving security vulnerabilities on the bug bounty 

platform learn from the previously resolved vulnerabilities and the experience gained from such 

vulnerabilities affects the resolution-time of future vulnerabilities. However, the learning process 

may not be obvious because of the intrinsically complicated nature of vulnerabilities and the 
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crowdsourcing effect of the bug-bounty platform. While there is limited research to guide our 

understanding of the learning process of a vulnerability resolution, the closest stream of research 

within this area is the organization's learning process in software development and maintenance 

literature. The work of Boh, Slaughter, & Espinosa (2007), on the effect of prior experience on 

software development and maintenance performance, is helpful but differs from a typical 

vulnerability resolution process. The software maintenance process studied in the Boh et al., 

(2007) is based on an incremental software development approach, in which software developers 

incrementally develop and update the software programs. In this process, there is apparently, no 

time and competition pressure. However, vulnerability resolution is a time-sensitive process 

(Ablon & Bogart, 2017; Frei, et al., 2006; Jo, 2018; Johnson, et al., 2015), organizations face 

disclosure, competition as well as an exploitation threat if they do not promptly resolve a 

vulnerability. Kim & Kim (2014) studied the learning process of an antivirus software company 

while resolving malware problems. They found that malware resolution-time decreases with the 

increase in experience and cross-family malware resolution experience has a greater impact than 

the within-family experience on the resolution-time. Kim & Kim’s (2014) study is relevant to 

our study because of the organizational learning and security perspective, but the malware 

resolution process is very different from a vulnerability resolution process. A typical malware 

resolution process relies on human expertise, but a significant part of the process can be 

automated by computer algorithms (Kim & Kim, 2014; Szor, 2005). Whereas, a vulnerability 

resolution process is primarily based on human expertise and experience. Moreover, Kim & 

Kim's (2014) study doesn’t consider any sort of crowdsourcing in malware discovery and 

identification.  
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This study also make a theoretical contribution to the literature of crowdsourcing. Our 

focus in this study is to investigate how firms may work with crowdsourced solutions. Most of 

the current literature in crowdsourcing is focused on how contributors behave and learn in 

crowdsourcing environment (such as Boudreau, et al., 2011; Riedl & Seidelc, 2019), the 

motivation and governance of contributors (Shah, 2006), contributors’ submission quality 

(Bockstedt, et al., 2016), or why firms crowdsource in the first place (see review, Thuan, 

Antunes, & Johnstone, 2016). However, there is presently limited research on how firms work 

with crowdsourced solutions and how firms collaborate with the crowd in implementing such 

solutions. Hackers on a bug bounty platform collaborate with firms in two ways; first, they 

creatively identify a problem (vulnerability) in a system and, second, they help firms in resolving 

and testing the identified vulnerabilities (Finifter, et al., 2013). In return, firms incentivize 

hackers for their collaboration. Blohm et al., (2018) characterized crowdsourcing platforms into 

four categories based on the contribution types. The closest type of crowdsourcing to a bug-

bounty platform is the crowdsourcing by heterogenous collaborators who perform a broadcasted 

search to identify and solve highly technical problems (Blohm, et al., 2018). Our study 

contributes to the theory of crowdsourcing by exploring the relationship between a firm’s 

performance of working on a crowdsourced solution and how the hackers’ (solver) constant 

collaboration affects the firm's performance.  

Overall, this paper bridges gaps in the literature of information security economics, 

organizational learning, and crowdsourcing. Specifically, by studying the vulnerability 

resolution-time, we make a theoretical contribution to the vulnerability disclosure and patch 

management literature. Our findings also contribute to the organizational learning literature by 

analyzing the relationship between firm's experience and the firm’s efficiency. Further, we 
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contribute to the collaboration and team-familiarity aspects of the crowdsourcing literature. 

These theoretical contributions are novel for all three areas of literature; none of the previous 

studies have studied vulnerability resolution with an organizational learning and crowdsourcing 

perspective. 

3. Theory & Hypothesis Development 

Theoretical developments in organizational learning (Crossan, et al., 1999) and 

crowdsourcing literature (such as, Blohm, et al., 2018) guide our understanding of the process 

through which a firm’s security team gains knowledge and experience over time as they interact 

with the hackers on a bug bounty platform. Organization learning is defined as the change in the 

organization’s performance, such as problem-solving outcomes, production, financial outlook, or 

task completion times, as the organization acquires experience (Argote, et al., 2009; Dutton & 

Thomas, 1984). In the context of bug-bounty platforms, as organizations harness the wisdom of 

the crowd, i.e., hackers, organizational learning takes place while resolving security vulnerability 

reports, and it may reflect in a measurable metric such as the resolution-time of these 

vulnerabilities.  

While it is known that organizational experience generally improves firm performance 

through utilizing the knowledge of involved stakeholders (e.g., Reagans, et al., (2005)), the 

dynamic nature of the online community leads to a higher uncertainty in the communication 

process and resolution outcomes. The working experience with one or a few hackers may not 

necessarily apply to the next work process with a new reporting hacker. That is, with limited 

learning, performance can suffer due to an “over-generalization” of experience. Researchers 

have studied over-generalization of experience by analyzing the relationship between limited 

experience and spurious successes or failures (Haleblian & Finkelstein, 1999; Musaji, Schulze, 
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& De Castro, 2020; B. Zhao & Olivera, 2006). On the one hand, a spurious success can reduce 

the motivation to learn from potential or near-failures. On the other hand, a spurious failure can 

replace or modify a potentially reliable problem-solving process with an unreliable process. 

Thus, both spurious successes, as well as spurious failures are determinantal to performance.  

We posit a similar phenomenon in the vulnerability resolution process. Organizations 

with limited vulnerability resolution experience may encounter spurious successes or failures. In 

contrast, those with more experience may be able to identify and select reliable problem-solving 

methods and routines. Thus, we expect to see an increase in resolution time at low levels of 

experience due to the over-generalization before seeing a positive learning effect or an inverted-

U shape relationship between the firm experience and the vulnerability resolution time. When 

there is a limited amount of working experience, the vulnerability resolution time increases as 

the experience increases, which leads to an upward trend in vulnerability resolution time. 

However, after the firm has gained a sufficient amount of working experience on the platform, 

the positive learning effect of experience kicks-in; this positive learning effect leads to a 

downward trend in vulnerability resolution time. 

H1. Firm’s vulnerability resolution time has an inverted U-shape relationship with the number of 

vulnerabilities resolved in the past. 

In the vulnerability resolution process, one of the sources of over-generalization comes 

from the diversity of crowdsourcing hackers. That is, since the working and communication 

patterns of hackers vary, the experience with one certain hacker may not necessarily apply to the 

other hackers. While generalizing the limited experience with the prior hackers to the future 

hackers could result in an over-generalization, partnering with the same hacker over a period of 

time could reduce the over-generalization. In the literature, researchers have shown that 
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individual experience only benefits the team performance when they are familiar with others in 

the team (Huckman et al., 2009). In the case of a bug-bounty platform, the hacker and the firm’s 

security team may work as a collaborative unit leading to an increase in performance, such as 

reduced vulnerability resolve-time. Under the virtual environment, teams collaborating in a 

concerted manner have shown higher performance (Riedl & Woolley, 2017). Thus, while the 

over-generalization effect leads to an inverted-U experience effect (H1) on a firm’s performance, 

we anticipate that the positive learning effect may kick in earlier (at less experience) if the firm 

works with the same hacker repeatedly. In other words, we expect that the turning point of the 

inverted-U relationship between the firm’s experience and vulnerability resolution time 

decreases as the firm is more familiar with the hacker of the reported vulnerability.  

H2. The turning point of the inverted-U relationship between the firm’s experience and 

vulnerability resolution time decreases as the firm gains more experience of working with the 

same hacker. 

Generally, team familiarity yields superior performance, and firms with higher internal 

team familiarity have higher learning rates (Reagans et al., 2005). Team familiarity is based on 

increased coordination and willingness to engage in a relationship between team members. Uzzi 

(1996) has found that coordination also helps in developing trust. Trust between team members 

also promotes the exchange of private knowledge and information critical for learning (Uzzi & 

Lancaster, 2003). On bug-bounty platforms, with the increased experience with the same hacker, 

the firm’s security team develops increased coordination. It develops a higher level of trust with 

the hacker to resolve security vulnerabilities. These factors subsequently impact the firms 

learning rates, which in turn yields a higher resolution efficiency. Formally, we operationalize 

the hypothesis as follows. 
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H3. The working experience with the same hacker increases the concavity of the inverted U-

shape relationship between the firm’s experience and vulnerability resolution time. 

4. Study Context and Data 

In this study, we use a dataset gathered from a bug-bounty platform HackerOne.com. 

This intermediary connects organizations with ethical hackers. HackerOne is currently one of the 

largest bug bounty platforms with the highest number of registered hackers, organizations, and 

reports submissions (Luna, Allodi, & Cremonini, 2019).  

Once a hacker submits a vulnerability report to a firm, the firm evaluates its validity. If 

the report is valid, the firm deploys resources to find a solution to fix the vulnerability. Later, the 

report can be marked as closed by the firm once the vulnerability is fixed. To study the learning 

process of firms in resolving such security vulnerabilities, we collected 51,580 valid submitted 

and closed vulnerability reports for 314 firms since the inception of the platform in November 

2013 till August 2019. For each vulnerability report, data about the firm, the creator (i.e., the 

hackers), whether or not the bounty is awarded, and the timestamp when the report was marked 

as resolved by the firm is available. In this data, 6,307 out of 51,580 vulnerability reports have 

been made publicly available after being resolved by the firm. These detailed reports provide 

information on the vulnerability reporting time, the severity (none, low, medium, high, critical) 

of the vulnerability, the bounty amount paid by the firm, the discussion comments between the 

hacker and the firm's security team, and the vulnerability resolution time.  

4.1 Dependent Variable: Vulnerability Resolution Time 

The first hypothesis examines the overall relationship between the time spent by a firm in 

resolving reported vulnerabilities and the firm’s experience of resolving such vulnerabilities on 

the platform. The second and the third hypotheses study the moderating effect of working with 
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the same hacker on the aforementioned relationship. The vulnerability resolution time is the main 

dependent variable used to examine all the hypotheses in our study. The vulnerability resolution 

time is defined as the number of days elapsed between the reporting of a vulnerability to a firm 

and its eventual resolution by the firm. We denote 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ, as the number of days 

needed to resolve the 𝑟𝑡ℎ vulnerability report submitted to a firm 𝑖 by hacker h at time 𝑡𝑟. 

Following Arora et al. (2010),  we compute the 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ in days. From the dataset, we 

observe that 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ has a skewed distribution with a mean of 46.6 days, standard 

deviation of 100.3 days, skewness of 4.98 and kurtosis as 37.35 days. To address skewness and 

maintain consistency with prior learning literature (e.g., Kim & Kim, 2014), we perform log-

transformation and use the dependent variable as 𝐿𝑜𝑔𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ. Also, given that only 

certain reports on the platform are publicly disclosed, we conduct analysis using the data from 

the disclosed reports. While our analyses are based on these disclosed reports, we correct for the 

sample selection bias using a Heckman selection model in all our models.  

4.2 Independent Variable: Firm’s Vulnerability Resolution Experience 

After validating the initial report filed by a hacker on the platform, the firm’s security 

team works on a solution to fix the vulnerability and then marks it as resolved. Regardless of 

whether a report is publicly disclosed or not, each report's closing time is noted on the platform. 

Using these closing timestamps, we can track the number of reports closed on any particular day. 

Using information about the report creation date of the publicly disclosed reports, we compute 

the number of reports that have been closed before the arrival of a new report. Thus, our main 

independent variable, 𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ, is the total number of reports resolved by the 

firm i before the creation time 𝑡𝑟 of the report submitted the hacker h. Again, as with 

𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ, we log-transform 𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ to 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ 
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to address skewness (mean = 202.73, standard deviation = 389.7, skewness = 3.76, kurtosis = 

20.0). 

4.3 Moderator: Hacker Experience Effect 

We want to assess the impact of the experience of working with the same hacker as 

compared to a variety of hackers on the experiential learning effect of the firm. For this, we 

examine the moderating effect of the number of reports submitted by the same hacker on the 

relationship between the firm’s overall experience and vulnerability resolve time. To capture the 

hacker experience effect on the resolving time of a focal report, we consider the prior reports 

submitted by the focal hacker of that report. First, we denote the prior experience of working 

with the focal hacker h by 𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ, i.e., the number of reports from the 

hacker h that have been resolved by firm i before the creation time 𝑡𝑟 of the focal report r 

submitted by the same hacker h. Then, the ratio 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ is the 

fraction of 𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ reports among all reports closed by the firm prior to 𝑡𝑟.  

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ  =
𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ

𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ
 (1) 

5. Empirical Models and Specification 

We begin by empirically analyzing the relationship between the firm’s vulnerability 

resolving time and the resolving experience using a linear regression model. In this model, we 

control for the time-invariant firm and hacker characteristics while using a firm fixed effect and 

hacker fixed effect. Furthermore, to capture the platform-wide policy changes over time, we 

incorporate a time fixed effect. Given the nature of the empirical study using archival dataset, we 

should note that the firm’s vulnerability resolution time and its experience can still be 

endogenous. For example, firms may put more resources as they gain more experience on the 
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platform, which in turn lower the resolution time as well. While finding a valid instrument is 

challenging, we use an instrument-free approach to address such a concern in the later section.  

The model in Equation (2) analyzes hypothesis H1, i.e., the overall learning effect on 

firms when resolving vulnerabilities on the bug bounty platform.  

𝐿𝑜𝑔𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ  

= 𝛾1𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ + 𝛾2𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

+ 𝐹𝑖𝑟𝑚𝑖

+ 𝐻𝑎𝑐𝑘𝑒𝑟𝑟 + 𝐷𝑎𝑦𝑡 + 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝑟 + 𝛾3𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟 + 𝑍𝑖,𝑟𝚪

+ 𝜀𝑖,𝑡𝑟
     (2) 

In the model, the 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 and 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2 capture the 

non-linear learning effect of the firms. If H1 is supported, we posit that there is an inverted U-

shaped relationship between the resolving time and the experience of resolving reports. 

Accordingly, if H1 is supported, the coefficients 𝛾1will be positive and 𝛾2 will be negative. 

𝐹𝑖𝑟𝑚𝑖 and 𝐻𝑎𝑐𝑘𝑒𝑟𝑟 are fixed effects controlling for the unobserved time-invariant 

characteristics of firms and hackers, respectively. 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝑟 is the vulnerability fixed 

effect capturing the unobserved time-invariant characteristics of a specific vulnerability. There 

are 102 different vulnerability types (e.g., code injection, brute force attack) identified by 

hackers on the platform. Similarly, 𝐷𝑎𝑦𝑡 is the time fixed effect controlling for the platform-

wide time-invariant effects. While these fixed effects will not directly be estimated, the inclusion 

of these fixed effects allows us to capture the potential heterogeneity across reports.  

Since we can only observe resolution time for the disclosed reports, we correct for 

sample selection bias using a Heckman correction (Heckman, 1979) and estimate the inverse 

Mills Ratio (𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟) using a Probit model based on the temporal characteristics of 

firms and hackers, such as firm’s resolution experience, hacker’s overall experience, bounty 

amount if awarded, number of assets available for discovery, and the variety of assets available 
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at the time of the disclosure of a report. The estimated Heckman model is presented in the 

appendix of the paper. The 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟 estimated from the Heckman model is 

incorporated in the main model in equation (2). 

𝑍𝑖,𝑟 is the matrix of the report characteristics such as the severity level, the number of 

comments received, the number of participants, the bounty amount, and so forth. We have also 

added time-varying hacker and firm characteristics in this matrix, such as hacker's experience on 

the platform, the number of firms’ assets, and the number of different types of firm’s assets in 

scope at a particular date. The full listing of control variables (𝑍𝑖,𝑟) is given in Table 1. Finally, 

𝜀𝑖,𝑡𝑟
 is the idiosyncratic error. 

Table 1: Descriptive Statistics of All Variables 

Variable Description Mean 
Std 

Dev.  

Total Number of Disclosed Reports = 6,307  

𝐿𝑜𝑔𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ 
The log of the number of days elapsed between 

report creation date and the report resolving date for 

report 𝑟 submitted to firm 𝑖 by hacker h. 

2.51 1.709 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙

𝑖,𝑡𝑟,ℎ

 
The log of the number of resolved reports by the firm 

i before the creation time 𝑡𝑟 of report r submitted by 

hacker h. 

3.816 2.045 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟

𝑖,𝑡𝑟,ℎ

 

The ratio of the number of reports closed with hacker 

h by the firm i to the overall reports resolved by the 

firm i before creation time 𝑡𝑟 of report r submitted by 

hacker h. 

0.014 0.070 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓
𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠𝑖,𝑡𝑟,ℎ

 The number of comments between the hacker h and 

the firm i on the report r created at the time 𝑡𝑟. 
11.57 7.51 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑖,𝑡𝑟,ℎ 

(𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 − 𝑁𝑜𝑛𝑒) 

Six different levels of severity indicators assigned by 

the firm i to the report r created by hacker h at the 

time 𝑡𝑟. 

- - 

𝐿𝑜𝑔
𝐵𝑜𝑢𝑛𝑡𝑦𝐴𝑚𝑜𝑢𝑛𝑡

𝑖,𝑡𝑟,ℎ

 The log of the amount of the bounty awarded by the 

firm i for report r created by hacker h at the time 𝑡𝑟. 
2.981 3.134 

𝑆𝑡𝑎𝑡𝑢𝑠𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠𝑖,𝑡𝑟,ℎ 

𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑, 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒, 
𝑁𝑜𝑡 − 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒  

Three status indicators, Resolved, Information and 

Not Applicable based on the firms i final decision for 

report r created by hacker h at the time 𝑡𝑟. 

- - 
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𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓
𝐴𝑠𝑠𝑒𝑡𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖,𝑡𝑟,ℎ

 
The number of assets on which the firm i has 

promised to offer a bounty at the time 𝑡𝑟when report 

r was created by the hacker h.  

10.46 58.74 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓
𝑇𝑦𝑝𝑒𝑠𝑜𝑓𝐴𝑠𝑠𝑒𝑡𝑠

𝑖,𝑡𝑟,ℎ

 
The number of types of assets on which the firm i is 

accepting reports at the time 𝑡𝑟when report r was 

created by hacker h. 

0.499 1.17 

𝐻𝑎𝑐𝑘𝑒𝑟
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑇𝑜𝑡𝑎𝑙

𝑖,𝑡𝑟,ℎ

 
The number of resolved reports of the hacker h on 

the platform before the creation of report r for firm i 

at the time 𝑡𝑟 from hacker h. 

10.68 24.0 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑖,𝑡𝑟
 

The value of the inverse mill ratio estimated using 

the Heckman first stage model at the time 𝑡𝑟 when 

report r was created for firm i. 

0.398 0.833 

 

Equation (2) studies the hypothesis presented in H1; however, it does not consider the 

effect of the experience gathered while working with the same hacker. H2 and H3 capture the 

effect of learning from the reports while working with the same hacker over time. To test these 

hypotheses, the model in Equation (3) examines the moderating effect of the focal hacker 

experience using the moderator 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ. 

𝐿𝑜𝑔𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ

= δ0 + 𝛿1𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ + 𝛿2𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

+ 𝛿3𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ

+ 𝛿4(𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ × 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ )

+ 𝛿5 (𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

× 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ)

+ 𝐹𝑖𝑟𝑚𝑖 + 𝐻𝑎𝑐𝑘𝑒𝑟𝑟 + 𝐷𝑎𝑦𝑡 + 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝑟 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟

+ 𝑍𝑖,𝑡𝑟
𝚪 + 𝜀𝑖,𝑡𝑟

  (3) 

where, 𝜀𝑖,𝑡𝑟
 is the idiosyncratic error, 𝑍𝑖,𝑡𝑟

is the same matrix used in estimating the Equation (2).  

6. Main Analysis  

The main results are estimated using fixed-effect linear regression analysis. In Table 2, 

Column (1) only focuses on the linear experience effect. Column (2) analyzes the non-linear 

relationship between vulnerability resolution-time and experience and exhibits an inverted U-
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shape relationship between the firm experience and its resolving time. (γ1 = 0.3397 and γ2 =

−0.04441). 

Table 2: Main Analysis 

 (1) (2) (3) 

Dependent Variable 
𝑳𝒐𝒈

𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,𝒉
 

𝑳𝒐𝒈
𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,𝒉

 
𝑳𝒐𝒈

𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,𝒉
 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ 0.1185*** 0.3397*** 0.3184*** 

 (0.04066) (0.08275) (0.08447) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

  -0.04441*** -0.03904*** 

  (0.01485) (0.01500) 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   -2.2038* 

   (1.1585) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ

× 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   2.6364** 

   (1.1477) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

× 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   -0.5509** 

   (0.2296) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖,𝑡𝑟,ℎ -0.7762*** -0.7576*** -0.7455*** 

 (0.1867) (0.1869) (0.1869) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝐻𝑖𝑔ℎ𝑖,𝑡𝑟,ℎ -0.5164*** -0.5036*** -0.5101*** 

 (0.1244) (0.1238) (0.1236) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑀𝑒𝑑𝑖𝑢𝑚𝑖,𝑡𝑟,ℎ -0.2673** -0.2639** -0.2683** 

 (0.1048) (0.1047) (0.1046) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑖,𝑡𝑟,ℎ -0.5614*** -0.5432*** -0.5239*** 
 (0.1331) (0.1330) (0.1333) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑁𝑜𝑛𝑒𝑖,𝑡𝑟,ℎ -0.8047*** -0.7869*** -0.7862*** 

 (0.1770) (0.1761) (0.1763) 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠𝑖,𝑡𝑟,ℎ 0.06272*** 0.06287*** 0.06280*** 

 (0.005488) (0.005486) (0.005514) 

𝐿𝑜𝑔𝐵𝑜𝑢𝑛𝑡𝑦𝐴𝑚𝑜𝑢𝑛𝑡𝑖,𝑡𝑟,ℎ -0.03237* -0.02836* -0.02577 

 (0.01722) (0.01721) (0.01728) 

𝑁𝑜𝑡𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒𝑆𝑡𝑎𝑡𝑢𝑠𝑖,𝑡𝑟,ℎ -0.2177 -0.2036 -0.1912 

 (0.2902) (0.2839) (0.2826) 

𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝑆𝑡𝑎𝑡𝑢𝑠𝑖,𝑡𝑟,ℎ 1.1048*** 1.0988*** 1.0981*** 

 (0.1347) (0.1347) (0.1349) 
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐴𝑠𝑠𝑒𝑡𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑖,𝑡𝑟,ℎ
 0.002805*** 0.002508** 0.002438** 

 (0.001084) (0.001078) (0.001095) 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑦𝑝𝑒𝑠𝑜𝑓𝐴𝑠𝑠𝑒𝑡𝑠𝑖,𝑡𝑟ℎ -0.3166*** -0.2842*** -0.2948*** 
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 (0.09696) (0.09748) (0.09794) 

𝐻𝑎𝑐𝑘𝑒𝑟𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑖,𝑡𝑟,ℎ 0.1572*** 0.1667*** 0.1865*** 

 (0.05396) (0.05373) (0.05482) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟 0.04685 0.03799 0.03603 

 (0.04904) (0.04897) (0.04914) 

Firm & Asset Type Fixed Effects Yes Yes Yes 

Day Fixed Effects Yes Yes Yes 

Hacker Fixed Effects Yes Yes Yes 

Vulnerability Type Yes Yes Yes 

Observations 4354 4354 4354 

R-squared 0.785 0.786 0.787 

* p<0.1, ** p<0.05, *** p<0.01 

To further test the U-shape relationship postulated by H1, we use a three-step procedure 

suggested by Lind & Mehlum (2010). First, we ensure that 𝛾2 is significant and of the opposite 

sign of the 𝛾1, i.e. 𝛾1 > 0, γ2 < 0, 𝑏𝑜𝑡ℎ 𝑎𝑟𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡. Second, we note that the slope is 

sufficiently steep at both ends of the data range. Third, the turning point is observed to be well 

within the data range. Taking the first derivative of Equation (2) and setting it zero, yields the 

turning points at 3.82*** (std. error 0.651), 95% CI [2.548 – 5.101]. Our turning point is well 

within the data range (i.e. 0 – 8.03). The firm has to resolve at least 3.825% of reports (or 

𝑒3.825  ≈ 47.087 reports on average) before the resolution time starts decreasing. Figure 1 

supplements these tests and shows the non-linear relationship between the firm’s experience and 

its vulnerability resolution time.  
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Figure 1. Estimated Relationship between the Firm’s 

Experience and its Resolving Time 

Column (3) analyzes the relationship between experience and resolution time while 

moderating the experience of working with the same hacker. In the U-shaped relationship, the 

moderation by a variable can work in two distinct ways: it can shift the turning point of curve left 

or right, and it can flatten or steepen the curve (Haans, Pieters, & He, 2016). If the moderator 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟 shifts the curve to the left and also steepens it at the same time, 

we can say that hypotheses H2 and H3 are supported. Following the guidelines provided by 

Haans et al. (2016), we test how the moderation affects the turning point in this U-shaped 

relationship. To find the turning point in Equation (3) in regard to the firm’s experience, we find 

the first-order condition with respect to 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 which gives us Equation (4).  

 

  

From Equation (4), we observe that the turning point 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝐴𝑙𝑙∗ depends 

on the moderator, 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟. To show how the turning point changes with 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟, we take the derivative of Equation (4) with respect to 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟. This gives us:  

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙∗ =
−𝛿1 −  𝛿4(𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟 ) 

2𝛿2 + 2𝛿5(𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟)
  (4) 
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To test formally whether a shift in the turning point occurs, we assess whether Equation 

(5) as a whole is significantly different from zero at specific and meaningful values of the 

moderator (Haans et al. 2016). A positive and significant Equation (5) suggests that the turning 

point is shifting to the right as the moderator increases, while a negative and significant Equation 

(5) suggests that the turning point is shifting to the left as the moderation increases. Since a very 

small number of firms have the experience of working with the same hacker, the mean and 

standard deviation of the R𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟 is at 0.0577 and 0.03216 respectively. 

Upon formally testing the Equation (5) at the mean value as well as the 1-2 standard deviations 

above the mean, we find that Equation (5) is significant and negative for all these values of the 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟, suggesting a significant shift to the left. Thus, H2 is supported. 

Table 3 shows the shift in the turning point as moderator increases using Equation (4).  

Table 3: Turning Point Shifting to the Left with Increase in Moderator 

(1) (2) (3) 

𝑹𝒂𝒕𝒊𝒐𝑭𝒊𝒓𝒎𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆𝑯𝒂𝒄𝒌𝒆𝒓 
𝑳𝒐𝒈𝑭𝒊𝒓𝒎𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆𝑨𝒍𝒍∗ 

(Std. Err.) 
95% Conf. Interval 

0.0 4.070*** (0.830) [2.449 – 5.704] 

0.1 3.091***(0.302) [2.497 – 3.684] 

0.2 2.837***(0.270) [2.307 – 3.366] 

0.3 2.715***(0.270) [2.186 – 3.245] 

0.4 2.645***(0.274) [2.107 – 3.183] 

0.5 2.600***(0.279) [2.052 – 3.147] 

0.6 2.568***(0.283) [2.012 – 3.123] 

0.7 2.544***(0.278) [1.981 – 3.107] 

0.8 2.526***(0.290) [1.957 – 3.094] 

0.9 2.511***(0.292) [1.938 – 3.085] 

1 2.499***(0.294) [1.921 – 3.077] 
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To test hypothesis H3, i.e. whether the moderation is steepening the curve, we test the 

significance of the coefficient on the interaction between the moderator and the quadratic term in 

the specification model (Haans et al., 2016). The results show that the coefficient on 𝛿5 (-

0.5723**) is negative and significant, and thus the curve steepens for the firms who have 

experience working with the same hacker. This steepening also suggests that working with the 

same hacker increases the rate of learning. Thus, hypotheses H3 is also supported.  

Another important observation from the Column (3) is the decrease in the intercept for 

the moderated curve. The coefficient on the 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟 is negative and 

significant at 10% significance level. It suggests that working with the same hacker shifts the 

overall curve downward for the firm, implying a lower resolution time for working with the same 

hacker, at the same level of experience, as compared to working with a variety of hackers. 

7. Endogeneity Correction Using Copula Approach 

Although we control for time-invariant fixed effects for the firms, hackers, platform, and 

the characteristics of the vulnerability types, there is a possibility of other confounding factors 

that we have not observed, which can affect the firm’s experience as well as the resolution 

performance at the same time. Typically, to alleviate the endogeneity problem, researchers can 

model the endogenous variable using exogenous variables in an instrument variable approach. 

The modeled endogenous variable would be considered as uncorrelated with the error term. 

However, finding a valid IV is typically challenging, and the exclusion restriction assumption is 

usually untestable. Another way to tackle the possible endogeneity is to explicitly model the 

correlation between the endogenous variable and the error term (see Ebbes, et al., 2009) such as 

the copula approach (Park & Gupta, 2012). Park & Gupta (2012) address the endogeneity 

problem by estimating the joint distribution of the endogenous regressor and the error term using 
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a Gaussian copula function. Copulas are functions that join or “couple” multivariate distributions 

to their one-dimensional marginal distribution functions (Balakrishna & Lai, 2009). Park & 

Gupta (2012) proposed to construct a multivariate distribution that effectively captures the 

correlations between the regression and the structural error with the assumption that the 

endogenous variable does not have a normal distribution. Once the correlation is explicitly 

modeled, the biased estimates due to the endogeneity problem can be alleviated.  

Consider the model presented in Equation 2, if 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 is endogenous, 

the correlation between 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙 and error term ill not be zero i.e. 

𝐸(𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 𝜖) ≠ 0. To model this correlation, we can assume that the 

endogenous regressor, 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 is comprised of two variables,  𝑥1 and 𝑋2, 

which represents an endogenous part and an exogenous regressor respectively. We assume that 

the CDF of the error term (𝜀𝑖,𝑡𝑟
) in the model follows normal distribution with mean 0 and 

variance 𝜎2
𝜀. The joint CDF of the Gaussian copula between error term and 𝑥1 can be 

represented as:  

𝐺(𝑥1, 𝜀) = 𝑁(𝑥1
∗, 𝜀∗ )      (6)  

Where 𝑥1
∗ =  Φ−1(𝐹𝑥(𝑥1)), 𝜀∗ =  Φ−1(𝐹𝜖(𝜖)), 𝐹𝑥 signifies the CDF of 𝑥1, Φ denoted the 

standard normal CDF and 𝑁 is the bivariate standard normal distribution with correlations 

coefficient 𝜌. By differentiating the joint probability density functions in Equation 6:  

𝑔(𝑥1, 𝜖) =
 𝛿 𝛿

𝛿𝑥1𝛿𝜀
𝑓𝑥𝑓𝜖 , 

Where 𝑓𝑥 and 𝑓𝜖 are the marginal densities of 𝑥1and 𝜖 respectively. Following the Park & 

Gupta (2012) method, we can rewrite Equation 2 by splitting up 𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙 in an 

exogenous and endogenous part by including the normal inverse copula as follows:  
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𝐿𝑜𝑔𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑇𝑖𝑚𝑒𝑖,𝑡𝑟,ℎ  

= 𝛾1𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ + 𝛾2𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

+  𝛾3𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐶𝑜𝑝𝑢𝑙𝑎𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟

∗ + 𝐹𝑖𝑟𝑚𝑖 + 𝐻𝑎𝑐𝑘𝑒𝑟𝑟 + 𝐷𝑎𝑦𝑡

+  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝑟 + 𝛾4𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑀𝑖𝑙𝑙𝑠𝑅𝑎𝑡𝑖𝑜𝑟 + 𝑍𝑖,𝑟𝚪 + 𝜀𝑖,𝑡𝑟
     (6) 

Following Park & Gupta method, we estimate the normal inverse copula correction 

created from an estimated density function for 𝑥1 recovered from the Epancechnikov kernel 

function. Table 4 shows the estimation results with the copula correction plugged into Equation 

(2) and (3).  

Table 4: Endogeneity Correction Using Copulas 

 (1) (2) (3) 

Dependent Variable 
𝑳𝒐𝒈

𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,ℎ
 

𝑳𝒐𝒈
𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,ℎ

 
𝑳𝒐𝒈

𝑹𝒆𝒔𝒐𝒍𝒗𝒆𝑻𝒊𝒎𝒆𝒊,𝒕𝒓,ℎ
 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ 0.4855*** 0.4055*** 0.3864** 

 (0.1483) (0.1555) (0.1610) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

  -0.03712* -0.03179 

  (0.02159) (0.02191) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐶𝑜𝑝𝑢𝑙𝑎𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟
 -0.9375*** -0.2602 -0.2626 

 (0.3631) (0.5294) (0.5421) 

𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   -2.0517* 

   (1.1666) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ

× 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   2.5368** 

   (1.1484) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

× 𝑅𝑎𝑡𝑖𝑜𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐻𝑎𝑐𝑘𝑒𝑟𝑖,𝑡𝑟,ℎ   -0.5404** 

   (0.2292) 

Baseline Control† Yes Yes Yes 

Observations 4355 4355 4355 

R-squared 0.786 0.786 0.787 

* p<0.1, ** p<0.05, *** p<0.01 
†All the control variables and fixed effects were not reported in the Table 4 due to the space 

limitation.  

 

 In Table 4, we find that our results are consistent with the main model qualitatively. Due 

to the limitation of space, we only reported the main variables and the copula regressor denoted 
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by 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐶𝑜𝑝𝑢𝑙𝑎𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟
. The results in Table 4 are all consistent with the main results: 

there is an inverted-U shape relationship between firm experience and vulnerability resolution 

time. In Column (3), 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒2 is insignificant with a negative sign. One possible reason 

for this is the high multicollinearity between the linear term, the square term, and the inverse 

copula term. However, the moderations with the linear term, the quadratic term, and the intercept 

of the moderation is significant and with the expected signs as in Table 2. Therefore, we argue 

that Park & Gupta’s instrument-free endogeneity correction method has produced consistent 

estimates and alleviated the unknown sources of endogeneity from our model.  

8. Conclusion and Discussion 

Theoretically, our study contributes to the growing literature of organizational learning, 

the economics of information systems, and crowdsourcing. The previous literature has not fully 

explored how firms work with online communities or in an open platform. Moreover, the 

information security literature has not studied the firm’s performance of vulnerability resolution 

with changing experience.  

On the practical side, our findings address one of the major pre-adoption fears of a bug-

bounty program, which is related to the high cost of processing the reported vulnerabilities (Al-

banna, et al., 2018). Firms also fear over-burdening their security teams and reducing their 

overall efficiency. Our initial results suggest that firms can leverage bug bounty programs while 

working with a small number of hackers. Working with a few hackers not only reduces the 

period of negative resolution performance but also increases the rate of learning. Once the firm’s 

security teams have gained adequate experience, they may leverage their programs with a larger 

crowd.  Therefore, a viable strategy in online communities such as bug bounty platforms is to 

start with a limited pool of crowdsourced workers while keeping high resolution efficiency.  
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Appendix 

Heckman selection model to remove selection bias of disclosure of a report.  

 (1) 

Dependent Variable 𝑫𝒊𝒔𝒄𝒍𝒐𝒔𝒆𝒅𝒊,𝒕𝒓,𝒉 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙𝑖,𝑡𝑟,ℎ 0.1617*** 

 (0.01756) 

𝐿𝑜𝑔𝐹𝑖𝑟𝑚𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝐴𝑙𝑙2
𝑖,𝑡𝑟,ℎ

 -0.03005*** 

 (0.001930) 

𝐵𝑜𝑢𝑛𝑡𝑦𝐴𝑤𝑎𝑟𝑑𝑒𝑑𝑖,𝑡𝑟,ℎ -0.8944*** 

 (0.03433) 

𝐿𝑜𝑔𝐵𝑜𝑢𝑛𝑡𝑦𝐴𝑚𝑜𝑢𝑛𝑡𝑖,𝑡𝑟,ℎ 0.2077*** 

 (0.005578) 

𝐻𝑎𝑐𝑘𝑒𝑟𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑖,𝑡𝑟,ℎ -0.1117*** 

 (0.004784) 

𝑆𝑐𝑜𝑝𝑒𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖,𝑡𝑟,ℎ 0.5085*** 

 (0.03207) 
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐴𝑠𝑠𝑒𝑡𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑖,𝑡𝑟,ℎ
 0.0001185 

 (0.0001455) 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑦𝑝𝑒𝑠𝑜𝑓𝐴𝑠𝑠𝑒𝑡𝑠𝑖,𝑡𝑟ℎ -0.03632*** 
 (0.01033) 

𝑌𝑒𝑎𝑟2012𝑖 - 

 - 

𝑌𝑒𝑎𝑟2013𝑖 0.1710 

 (0.2186) 

𝑌𝑒𝑎𝑟2014𝑖 0.6601*** 

 (0.03687) 

𝑌𝑒𝑎𝑟2015𝑖 0.6753*** 

 (0.03643) 

𝑌𝑒𝑎𝑟2016𝑖 0.6633*** 

 (0.03111) 

𝑌𝑒𝑎𝑟2017𝑖 0.7034*** 

 (0.02791) 

𝑌𝑒𝑎𝑟2018𝑖 0.2194*** 

 (0.02642) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -1.4938*** 

 (0.04703) 

Observations 51,570 

R-squared 0.142 

* p<0.1, ** p<0.05, *** p<0.01 

 

 


